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Abstract

Student retention is an important measure when in determining student success. Retention refers

to the first-time full-time student from previous fall term who returned to the same university for

the following fall term. Decline in retention rate have adverse effect on stakeholders, parents, and

students view about the institution, revenue generated from tuition cost and obtaining outside

funds. In an effort to increase retention rates, universities have started analyzing the factors that

correlate with students dropping out. Many universities have identified some of these factors and

are working on developing intervention programs to help students to elevate their academic perfor-

mance and eventually retain them at the university. However, identifying the students who require

this intervention is a very challenging task.

In this thesis, we propose the use of machine learning models to identify students who are at-

risk of not being retained so that university administration can successfully deploy intervention

strategies at an early stage and prevent the students from dropping out. We implemented classi-

fication algorithms including feed forward neural networks, logistic regression, and support vector

machine to determine at-risk students. The data to train these models was gathered from Univer-

sity of Nevada Las Vegas (UNLV) enterprise data warehouse: UNLV Analytics. The models were

evaluated on various metrics and the results showed that logistic regression model performed best

in predicting at-risk students for first-year retention and feedforward neural networks performed

best in predicting at-risk students in second-year retention at UNLV’s Department of Computer

Science.
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Chapter 1

Introduction

From the early 21st century, most American universities have been facing difficulties in retaining

students [Lau03]. A student is called first-time full-time when the student is admitted for the first

time in the university and has met the registered credit requirements defined by the university. In

a given academic year, the first-time full-time students are entitled as cohorts. Cohorts are used

in census data to report university retention and graduation rates. The Integrated Post-Secondary

Education Data System (IPEDS) defines retention rate as the percentage of cohort who enrolled

in the previous fall and continue to enroll in the current fall at the same university [Unia]. Univer-

sities often spend more money on admitting new students than focusing on retaining their current

students [Lau03].

Dropout students are those who do not enroll in their sophomore year after finishing their freshman

year in the same university, or students who transfer to another university. If students drop out of

the university, it affects the university’s graduation rate, as well as its reputation [YL04] [Lau03].

This impacts parents’ and students’ opinions about the university and can impact the admission

rate. Retention has also become a crucial factor for a university to receive outside funding [Nas96].

There are various reasons why freshman students do not retain to their sophomore year [TRL+94].

Some reasons for dropouts are beyond the limits of a university, such as students’ financial sit-

uations, changing career goals, or unrelated personal affairs. Many students drop out or change

their college due to an unhealthy environment that holds back students’ learning and educational

needs. Some students find it difficult to comprehend basic course work, and hence, are unable to

cope with the normal course requirements. Adding to this, students in their freshman year might

feel overwhelmed due to the transition from high school to college life [Lau03]. Apart from these
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limitations, universities must focus on the factors affecting student retention that are dependent on

students’ academic achievements and success. Academic success is the most important component

in student retention and can predict a student’s perseverance in their studies [DAM02] [PT05].

Academic factors include, but are not limited to, amount of credits taken per term, hours invested

in extracurricular activities, time spent at the library, enrollment in difficult courses before com-

pleting pre-requisites, grades in homework/assignments, final grades achieved in each course, part

time job workload, and so on [Lau03].

Retention is necessarily an important aspect in accord with institutional growth and success. Reten-

tion of students is necessary to maintain institutional financial goals and continue current academic

programs, by maintaining and improving them accordingly. Furthermore, universities want their

students to have a positive educational experience while they are studying in their institutions

[FF08]. Retention can also be used to measure the productivity of the institution in a student’s

success [Tin06]. Additionally, if a student is retained by the institution, there is a better chance

that he/she will graduate on time and enter the workforce to pay off any student loan debt [Lau03].

If a university is unable to retain its students, it may degrade stakeholders’ and donors’ views

about the university [Lau03]. Thus, universities should focus on robust solutions to improve stu-

dent retention. To do this, a university must determine which students are on the verge of dropping

out and help them individually, to increase their academic performance. In a traditional approach

to managing the retention problem, many universities use a rule-based system to identify po-

tential “at-risk” students [BS16]. However, it fails to address various factors that affect student

performance and often leads to low accuracy. Alternatively, to improve the identification of at-

risk students, universities must use standard-based grading and implement models based on it,

as standard-based grading provides clear, meaningful and personalized reports for individual stu-

dents, which can then be used to develop generic models [MDDM16]. All models developed using

machine learning have advantages over static, rule-based models and provide improved accuracy.

These models can be trained using academic data to find at-risk students and can lead universities

towards better solutions to increase retention.

Based on data obtained from University of Nevada Las Vegas’ (UNLV) enterprise data warehouse,

UNLV Analytics [unl], each year, on average, 7000 first-time full-time new undergraduate students
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are admitted to the University of Nevada, Las Vegas. Among these first-time full-time students,

an average of 3700 students enroll in course work, which is approximately 53% of the admitted

students [Unib]; this shows that only half of the admitted students actually enroll in the university.

With the data collected from UNLV’s enterprise data warehouse, research has found that in the

Department of Computer Science (CS), the enrollment to admission ratio has been decreasing over

the years. Each year the number of admitted students increases, but enrollment does not increase

at the same rate, see Table 1.1.

Table 1.1: Enrollment to admission ratio in Department of Computer Science of first-time full-time
students at UNLV

Year Admitted count Enrolled count % enrolled in CS

2012 83 51 61.44

2013 136 75 55.14

2014 189 105 55.55

2015 194 103 53.09

2016 233 97 41.63

2017 184 80 43.47

2018 250 103 41.2

2019 295 117 39.66

Table 1.1 shows an alarming decrease in percentage of enrolled students in first-year over the years

in Department of Computer Science at UNLV and has increased the necessity of maintaining the

number of currently enrolled students. To maintain the current enrolled students, university admin-

istration must focus on locating students at-risk, in order to prevent dropouts and to increase the

retention rate. The data collected from UNLV’s enterprise data warehouse for first-year first-time

full-time students for cohort years 2012 to 2017 shows that the number of students who are drop-

ping out of UNLV is comparatively higher than the students who are switching majors at UNLV

(Figure 1.1). However, second-year data shows that students at-risk are more likely to switch ma-

jors, instead of dropping out of the university (Figure 1.2).

The retention rate reported in the National Collegiate Retention and Persistence-to-Degree Rates

2018 is that 65.4% of all the undergraduates were retained for cohort year 2016, across the U.S.

[ACT]. A federal branch of the U.S. Department of Education, National Center for Education

Statistics (NCES) collects educational data, analyzes it, and reports statistical findings about

American education. As per the NCES report, 76% of full-time students (including transfer stu-
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Figure 1.1: Retention vs. Changed major vs. Dropout counts of CS first-time full-time students at
UNLV at the end of their first-year.

Figure 1.2: Retention vs. Changed major vs. Dropout counts of CS first-time full-time students at
UNLV at the end of their second-year.

dents) were retained at UNLV for the cohort year Fall 2018 from Fall 2017 [Unia] (Figure 1.3).

1.1 Objective

The aim of this thesis is to build a predictive model to identify students who are at-risk of dropping

out if timely intervention does not occur. To achieve this goal, we are training various machine

learning models, including feedforward neural network (FNN), logistic regression (LR), and support

vector machine (SVM) on student data collected at UNLV. All of the models are evaluated and

compared using evaluation methods like precision, recall, specificity, F1 score, fallout and accuracy.

Using these models, the university, or the Department of Computer Science, can identify students
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Figure 1.3: Retention of Freshman students of fall 2017 at UNLV

at-risk and help them elevate their academic performance through several methods, which include

but are not limited to, academic advising, one-on-one attention, tutoring, collaborative learning

[LL12], cooperative learning [Coo95], etc. These approaches will help improve the retention rate,

and maintain the enrollment count of Department of Computer Science at UNLV.
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Chapter 2

Background and Preliminaries

2.1 Related Work

Prediction of student retention has been a challenging problem for decades, and extensive research

is being conducted at many universities to effectively retain students at institutions of higher stud-

ies. Tinto is an early researcher, who is one of the pioneers of extensive research on educational

factors affecting student dropout. In his 1975 study, he stated that despite having a huge volume of

literature on student retention and dropout, many studies do not clearly identify factors affecting

dropouts, and because of this administration is unable to track the student population that requires

assistance in the education process [Tin75]. Therefore, Tinto developed a theoretical model to an-

alyze the relationship between students and the institution, which led to retaining students in the

institution. Moreover, in 1999, Tinto suggested that institutes should follow interactive learning

environments, such as communities that involve shared learning activities with students, teachers,

and administration, which are helpful in retention [Tin99]. Tinto later involved academic factors

into his theoretical model to make it more productive [Tin06]. Later, the input environment model

developed by Astin et al., suggested that while determining retention, pre-college factors, such as

gender, ethnicity, and high school GPA, should be considered [AA12]. Moreover, Linda suggested

by providing funding, academic support and physical facilities to motivate students will increase

retention [Lau03].

Along with determining the factors leading to dropout, researchers have started looking for groups

of students who are likely to dropout of an institute, so that the institute can find ways to develop

programs to retain these groups. Early researchers used traditional models to analyze retention
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[Ast84] [Lau03] [Tin75]. However, recent technology has helped researchers to use analytical mod-

els, designed using machine learning, to find better results and improved accuracy than traditional

models. Analytical models, such as logistic regression, decision tree, support vector machine, artifi-

cial neural network, random forest and other models, have been used to accurately locate students

at-risk of dropping out [FF08] [KBP12] [MDDM16]. In 2018, Rajuladevi did a research on first-year

retention rates at UNLV considering all students from all majors [Raj18]. He used logistic regres-

sion, decision tree, random forest classifier, and support vector machine models to find first-year

retention at UNLV.

In this thesis, we developed machine learning predictive models to find students at-risk of dropping

out, so that institutional intervention and support can be provided to help and retain these students

in order to maintain enrollment in the department.

2.2 Preliminaries

2.2.1 What is Machine Learning?

The Oxford Dictionary defines learning as: “something that you learn, especially from your ex-

perience of working on something” [Oxf]. The learning process of any living thing is essential for

their survival. This learning process starts evolving from birth; for example, lion cubs will not start

hunting immediately after they born. They will learn each day by observing their parents hunting

and survival skills, and try to do the same in their growing life to make appropriate decisions to

survive. The same logic is used in computer applications when they learn based on a given training

data, and produce a model that can be used to make decisions on previously unseen data, called

test data [BÖ14].

One of the pioneers of machine learning, Arthur Samuel [Sam59], verified the fact that a ma-

chine will learn to play a better game than the person who initially wrote the program. Later,

Tom Mitchell [Mit97] defined machine learning more formally: “A computer program is said to

learn from experience E with respect to some task T and some performance measure P, if its

performance on T, as measured by P, improves with experience E.”

For example: task T can identify if a student will be retained at the same university or not;
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performance measure P is the percent of students correctly identified as retained; and experience

E is the previous students’ retention information.

2.2.2 Machine Learning Algorithms

A machine learning model can learn in different ways. First, we can give the model a data with its

output, so that it can learn which data points have more importance in giving the correct output.

Once the model finishes its learning process, we can pass previously unseen data to the model to

predict the output. Second, we can pass data without any information about the output, and the

machine learning model will automatically find the similarities between different data points, and

output a similar kind of data in groups.

2.2.2.1 Supervised Learning

When a model is given data with previously defined output for each data point, then it is called

supervised learning [Kot07]. This model trains itself on training data to predict the output on test

data. Once the model is trained enough to give the output using training data, and it has been

determined how well it is predicting the output using the validation data, newly unseen test data

will be given to the model to predict its output. This kind of data is called fully labeled data,

which means each data point in the training data has its output tagged in the data.

The input data shown in Figure 2.1 contains features and output labels. It is divided into two

sub datasets: (i) training data, and (ii) validation data. The training dataset is passed to the

model in order to train the model using actual output labels attached to the data. Once the model

is trained, the validation data is passed to the estimator model in order to analyze the performance

of the model using numerous evaluation methods. Once we find the best model, this model is used

to predict output for unseen test data.

Supervised learning algorithms are used to solve classification and regression problems.

2.2.2.2 Unsupervised Learning

Often, it is very hard to find data that already has output attached to it. To solve such a prob-

lem, we use unsupervised learning models. In this scenario, we provide the unlabeled data to the

machine learning model, and the model automatically finds the useful information about the data
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Figure 2.1: Flow of supervised learning algorithm

for us, and solves problems like clustering similar kinds of data, detecting anomalies, and so on

[BÖ14]. In this scenario, we cannot compare the output of the model, and hence, it is harder to

measure its accuracy and sensitivity.

In Figure 2.2, the input data is a set of images of cats and dogs [Pex]. This dataset is passed

to an unsupervised model. This model will automatically extract the features from the given raw

data and form clusters of similar data features.

Figure 2.2: Flow of an unsupervised learning algorithm
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2.2.3 Selected Models

The data we used was collected from UNLV’s enterprise data warehouse, UNLV Analytics [unl],

and has output labels that indicate if a student was retained in the next fall term or not. As our

data contain labels, we used supervised learning approach to train our models. As our label data

is discrete and contains only 0 and 1, our data can be classified as a classification problem. We

have selected feedforward neural network, logistic regression, and support vector machine models

for our data. These models are explained in next sub-sections.

2.2.3.1 Feedforward Neural Network

An artificial neural network (ANN) is a computer program that simulates of how a human brain

works. In human brain, neurons transmit information gained by nerve cells. Brain contains bil-

lions of nerve cells that are inter connected which makes a network of nerves. Brain gets its input

information from visuals, sounds or touch sensation and output neurons respond with muscle in-

structions. A similar concept is used in designing an artificial neural network [BMB+18]. In an

ANN, neurons are represented by a mathematical function called perceptron. Perceptron is a sin-

gle layered neural network. It has four unique components: input, bias and weights, summation

function, and activation function; as shown in Figure 2.3.

Figure 2.3: A single layered neural network: Perceptron

The logic of a perceptron is that the first and second components, i.e., input vector x and predefined

weights, are multiplied and added in the third component to form a weighted sum. This weighted

sum is then passed into an activation function. Finally, the output of the activation function maps

the input vector to the output.
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Different components of a perceptron

Input: Input x is nothing but a vector with numeric values of all the features selected for designing

a neural network.

Weights: A randomly chosen value is assigned to each feature as a weight. Weights are the

essential factors for finding the predicted output. The weight of each feature determines how im-

portant that feature is in predicting the output of that input vector x.

Summation: The summation function gives the intermediate output by taking the multiplica-

tion of feature value and its weights, and finally, adding all of the multiplications. The summation

function is usually referred as a node.

Activation function: Activation function is used to determine the final output, i.e., the pre-

dicted output of input vector x. There are different types of activation functions such as sigmoid,

tanh, rectified linear unit (ReLU), etc. Each activation function has different way of interpreting

the output of summation component. For example, to find the predicted output between -1 and 1,

we can use the tanh activation function.

Feedforward Neural Network also known as Multilayer Perceptron (MLP)

In this neural network, there are more than one layer of perceptrons. These layers are called hidden

layers. The output of each hidden layer is taken as input to the next hidden layer, and the cycle

goes on until the last layer of the network, which is the output layer. The complexity of the model

depends on number of hidden layers and the number of nodes in each hidden layer. When all

the nodes are connected to each other, it is called as a fully connected network. A simple fully

connected multilayer perceptron is shown in Figure 2.4.

The feedforward neural network starts by calculating the summation (an) of the multiplications

of input features and their initial random weights for all nodes in the first hidden layer. Each

hidden layer will have initial weights for all input features. The final output is then calculated

using Equation 2.1.

an = W.xn (2.1)
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Figure 2.4: Fully connected multilayer perceptron [Mal].

where W is the matrix of the initial weights of all the nodes of a hidden layer and xn is a row of

an input data.

In this thesis, once we find the summation for all the nodes, we use a ReLU activation func-

tion to get the output of the hidden layers. We will define this output as Zn, which is calculated

using the mathematical function defined in Equation 2.2.

Zn = ReLU(an) (2.2)

ReLU is a mathematical function that maps the linear combination into the range of (0, x) and

is defined in Equation 2.3. The ReLU function takes identity for all positive values of input, and

zero for all negative values of input.

ReLU(x) = max(0, x) (2.3)

Similarly, for the next hidden layer, Zn will be the input vector. Using this input, we will find the

computation of the summation of the multiplication of the input and weights (an). Once all the

hidden layers are computed, we will use an activation function to find the predicted output ŷ for

the input data using Equation 2.4.

ŷ = sigm(an) (2.4)

There are various activation functions that can be used in output layer. For this thesis, we are

using a sigmoid function. A sigmoid function sigm is a mathematical function that maps the linear
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combination into the range of (0,1) and is defined in Equation 2.5.

sigm(t) =
1

1 + e−t
(2.5)

Feedforward Neural Network with Backpropagation

The feedforward neural network initially selects random weights for each hidden layer, and hence,

the predicted output at the end of first iteration may not be correct. In 1986, Geoffrey E. Hinton

proposed a way to update initial randomly selected weights to reduce the difference between actual

output and predicted output by neural networks [RHW86]. The weight adjustment occurs in all

the hidden layers. To perform the backpropagation logic, we need to continue from Equation 2.5.

Once we get the final output of the first run of the feedforward neural network, we will find the

difference (δ) between the actual output and predicted output using Equation 2.6. This difference

is called as “error.”

δ1 = ŷ−y (2.6)

Once we compute the error, we will send this error backward to the previous hidden layer to

compute the error using Equation 2.7. All the weights (W ) and an used here are from the same

hidden layer.

δ2 = (δ1 ∗W ) ∗ sigm(an) ∗ (1− sigm(an)) (2.7)

The output from Equation 2.7 is used to compute the error in the second to the last hidden

layer. Once we get the δ1 and δ2, we will update the weights for each hidden layer. Equation 2.8

updates the weights in the hidden layers by using the error and the input to the hidden layer. This

intermediate weights update is called gradients.

Wδ =
∑

δ1 ∗ Zn (2.8)

The final weights are updated by using the learning rate (α) or steps size of the neural network,

denoted in Equation 2.9. A neural network model with lower learning rate takes more time to train.

W = W–α ∗ 1

N
∗Wδ (2.9)

Finally, this whole process runs n number of times to reduce the error in the predicted and actual

output. The final weights are used on previously unseen data to predict the output, using Equations

2.1 and 2.4.
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2.2.3.2 Logistic Regression

Logistic regression is a classification algorithm used when output labels are binary (0 and 1) [Hen06].

It is a supervised machine learning model for classification which is built based on linear regression.

Linear regression is built using available input data with actual output variables, which is later used

to find the predicted output of unknown data. The linear regression model linearly combines input

data (X) using weights to predict a real-value output (y). An explanatory plot of linear regression

is shown in Figure 2.5. A similar method is used in logistic regression; however, it calculates the

probability of the outcome of the categorical output.

Figure 2.5: Plot of the linear regression model vs input data [Wik]

For example, it can give a result like the probability of the outcome of the output = 1 is 0.91, which

means there is a 91% chance that outcome will be 1. The equation for logistic regression for one

feature is expressed using Equation 2.10.

P (y = 1) = sigm(w0 + w1 ∗ x) (2.10)

The logistic function is used to convert the log-odds to probabilities. In the Equation 2.10, sigm

is a mathematical function called sigmoid function. This function maps the linear combination in

the range of (0,1), which is probability of the output (Figure 2.6). Equation 2.5 defines the sigm

function. For each independent variable, a coefficient is calculated, which defines the importance

of that variable in prediction. In Equation 2.10, w1 is a coefficient for x variable and w0 is the

intercept. The value of the intercept determines how all features are useful in finding the predicted

output. If the value of intercept is huge, then the model is under-fitting, which means the features

are less valuable in predicting the output.
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Figure 2.6: Logistic regression plot of predicted output [cvx]

2.2.3.3 Support Vector Machine

Support vector machine (SVM) is a supervised algorithm used in classification and regression

machine learning problems. An SVM algorithm finds the boundary between different classes by

maximizing the perpendicular distance between the boundary and the class points. This boundary

is called hyperplane [CV95]. For 2-dimensional data, only a line, i.e. a 1-dimensional hyperplane,

is found. Similarly, for 3-dimensional data, a 2-dimensional hyperplane is found. The equation for

the hyperplane is defined in Equation 2.11.

w0 + w1 ∗ x1 + w2 ∗ x2 + .....+ wn ∗ xn = 0 (2.11)

In Figure 2.7, the SVM model will find the hyperplane of linearly separable data. This line will

separate two features completely. When it is possible to find a hyperplane that linearly separates

data, we can optimize the hyperplane by finding the margin and the support vectors for each class.

The margin is found by calculating the perpendicular distance of data points to the hyperplane,

and choosing the data points that have the minimum distance from the hyperplane. The data

point inside the margin are called support vectors. In reality, there is a very low chance that a

dataset is linearly separable. The problem with such non-linearly separable data can also be solved

using SVM. For this, SVM has different methods that are used to find the hyperplane and support

vectors. We can use soft margin or kernal trick to solve such problems.

When there are a few data points that are mixed into incorrect classes and because of which, we
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Figure 2.7: Plot of an SVM model after finding the hyperplane [Che]

cannot find a linearly separable hyperplane, by using soft margin, SVM can permit a few points

that are misclassified and find the maximum margin. The degree of soft margin will decide the

number of support vectors. The higher the soft margin, the more penalties the SVM gets when it

makes a misclassification.

Kernel trick is used when the data points are linearly non-separable. Kernel trick will generate

new features using old features to find the nonlinear hyperplane. There are various kernel functions

available with SVM. We can use a linear, polynomial, radial basis function (rbf), sigmoid, or a self

defined kernel function. Figure 2.8, shows different plots generated using kernel functions.

Figure 2.8: SVM hyperplane plots of various kernel functions [Che]

For example, if you have a feature with values like X=[3, 1, 0, -1, -3] and the actual output labels

are y=[1, 1, 0, 1, 1], the data is linearly non separable, as all points lies on the same line. To make

them linearly separable, we can use a polynomial kernel trick, where we can use X2 to create a
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new feature that can be used with the old features to linearly separate the two classes.

2.2.3.4 Oversampling

Classes that are under-represented due to a fewer number of records available in the training data

will shift the results to the high density classes. To overcome this problem of under representation

of a class, we use oversampling techniques to increase the under-sampled class size to be equal to

the other classes by replacing the current available samples of that class in the dataset. There are

various ways to over-sample the classes: naive random over-sampling, Synthetic Minority Over-

Sampling Technique (SMOTE) [CBHK02], and Adaptive Synthetic (ADASYN) [HBGL08]. In this

thesis, we have used the random over-sampling technique to increase the number of data points in

under-represented class.

2.2.4 Evaluation Methods

Various evaluation methods are used in this thesis to compare the effectiveness and the performance

of the selected machine learning models. The best model is considered based on how well a trained

model performs on previously unseen data. If a model is performing exceptionally well on predict-

ing near to equal predictions, it is considered as well trained, or the best model. To determine

how well a model is working on previously unseen data, we divide our raw data into two parts: (i)

training data, and (ii) test data. Both datasets will have actual output attached to them. Using

training data, we will train the model with its features and actual outputs. The test data, on the

other hand, is used to test the model trained on the training data. Later, the predicted output of

test data is compared with the test data’s actual output to determine the effectiveness of the model.

There are many ways to measure the performance of a machine learning model. The performance

measures help us to improve the machine learning models that perform poorly in the initial phase.

There are various metrics available in machine learning to measure performance on the basis of the

problem type. This thesis is based on a classification problem, therefore, to evaluate the models,

we use confusion matrix, accuracy, specificity, precision, and many other evaluation methods to

define the effectiveness of the model. The next sub-section will define these metrics in detail.
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2.2.4.1 Confusion Matrix

A confusion matrix represents the predicted output compared with the actual output. The con-

fusion matrix also shows how many times a model is correctly predicting the output compared to

the actual output. The confusion matrix reports the true positives, false positives, true negatives,

and false negatives. These values are used to compute other metrics such as accuracy, precision,

specificity and recall. The representation of a confusion matrix is shown in Figure 2.9.

Figure 2.9: Representation of a confusion matrix

To get a better understanding about how a confusion matrix works, an example confusion matrix

for binary classification is shown in Figure 2.10. A confusion matrix is always a N × N matrix,

where N represents the number of classes. A confusion matrix always calculates the positives and

negatives of model prediction by comparing one class with the rest of the classes. The confusion

matrix shown in Figure 2.10 represents the output of 102 data points.

Figure 2.10: Example of a confusion matrix

Out of total data points, 60 data points are actual positives, and 42 data points are actual nega-

tives. Explanations and examples of true positive, true negative, false positive, and false negative

are given below.

True Positive: The number of true positives represents how many actual true outputs are pre-

dicted as true by the model. Figure 2.10 shows that 56 out of 102 data points are true positive.

False Negative: The number of false negatives represents how many actual true outputs are pre-

dicted as false by the model. A false negative example represents a type II error. A type II error

shows how many times a model failed to reject the false output. Figure 2.10 shows that four out

of 102 data points are false negative.
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True Negative: The number of true negatives represents how many actual false outputs are pre-

dicted as false by the model. Figure 2.10 shows that 21 out of 102 data points are true negative.

False Positive: The number of false positives represents how many actual false outputs are pre-

dicted as true by the model. A false positive example represents a type I error. A type I error

shows how many times a model failed to reject the true output. Figure 2.10 shows that 21 out of

102 data points are false positive.

2.2.4.2 Accuracy

The accuracy of a classification problem is the most common evaluation metric in machine learning.

Accuracy is defined as the number of correctly classified data points in a dataset to the whole

population of the dataset. The accuracy can be found by using a confusion matrix and is calculated

by taking ratio of the total number of true positives and true negatives to the total number of data

points in the dataset. The formula for accuracy using a confusion matrix is shown in Equation

2.12.

Accuracy =
TP + TN

TP + FN + TN + FP
(2.12)

For example, based on the confusion matrix depicted in Figure 2.10, the accuracy can be calculated

as (56+21)/102, which is 0.7549.

2.2.4.3 Precision

Precision is defined as the ratio of number of correctly predicted positive examples to the total

number of predicted positive examples. Equation 2.13 defines the calculation of precision.

Precision =
TP

TP + FP
(2.13)

For example, based on the confusion matrix depicted in Figure 2.10, the precision can be calculated

as 56/(56+21), which is 0.7272.

2.2.4.4 Specificity

Specificity is defined as the ratio of number of correctly predicted negative examples to the total

number of negative examples. Equation 2.14 defines the calculation of specificity.

Specificity =
TN

TN + FP
(2.14)
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For example, based on the confusion matrix depicted in Figure 2.10, the specificity can be calculated

as 21/(21+21), which is 0.50.

2.2.4.5 Recall

Recall is defined as the ratio of number of correctly predicted positive examples to the total number

of positive examples. Equation 2.15 defines the calculation of recall.

Recall =
TP

TP + FN
(2.15)

For example, based on the confusion matrix depicted in Figure 2.10, the recall can be calculated

as 56/(56+21), which is 0.7272.

2.2.4.6 Fallout

Fallout is defined as the ratio of number of incorrectly predicted negative examples to the total

number of negative examples. Equation 2.16 defines the calculation of fallout.

Fallout =
FP

FP + TN
(2.16)

For example, based on the confusion matrix depicted in Figure 2.10, the fallout can be calculated

as 21/(21+21), which is 0.50.

2.2.4.7 F1 Score

The harmonic mean of precision and recall gives the F1 score. It is calculated by using the Equation

2.17.

F1 =
2 ∗ (precision ∗ recall)
Precision+Recall

(2.17)

For example, based on the confusion matrix depicted in Figure 2.10, the F1 Score can be calculated

as 2*(0.7272* 0.7272)/(0.7272+0.7272), which is 0.7271.

2.2.4.8 Receiver Operating Characteristic (ROC) and Area Under the Curve

(AUC)

A receiver operating characteristic curve (ROC) is a graphical plot illustrating the connection

between sensitivity and specificity for every possible cut-off. Most binary classification models use

a 0.5 threshold on probability to predict classification. On the other hand, ROC will plot a graph
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with different threshold values from 0.0 to 1.0, using their true positive rates and false positive rates.

A false positive rate is obtained from the specificity of the model, as 1-specificity. The illustrative

ROC curve is shown in Figure 2.11. The ROC curve is used to compute the performance of the

model by using Area Under the Curve (AUC). The greater the area, the better the model in

prediction.

Figure 2.11: Illustration of ROC and AUC

2.2.4.9 Cross Validation

The most common method to train and validate a machine learning model is to divide the input

data into two parts; generally, the ratio will be 80% training data and 20% validation data. This

split of data is generally done by random sampling. This is a holdout validation technique to check

the proficiency of the trained model on the validation data. However, random sampling, may or

may not split data evenly, and can create combinations. Due to this uneven data, there is a chance

that, all of one class of data may end up in only the test data, and hence, the model will not see

such data while training, and will not predict the correct output for such data. To manage this

issue, we use cross validation.

The best cross-validation methods include k-fold and stratified k-fold cross-validation. In these,

the training data is divided into several chunks, and then excluding one chunk, all other chunks

are used to train the model, and the excluded chunk is used to validate the model’s performance.

This process is repeated for all chunks.

In k-fold cross-validation, shown in Figure 2.12, the data is split into k parts. Within these, k-1
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Figure 2.12: K-Fold cross validation model (K=5)

parts are used as training data, and one part is used as test data. Then holdout cross-validation is

done on test data to evaluate the performance of the model. The same process is repeated k times

with different test data. At the end, an analysis of the average scores is used to decide the model’s

performance on all of the data. Similarly, in stratified k-fold, the subsets are created by equally

dividing the imbalanced data. Each fold will contain approximately the same percentage of data

from each class.
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Chapter 3

Data Description

3.1 Data Collection

Data collection was one of the most difficult aspects of this thesis, and required substantial literature

review as well as expert help to select the features. The data for this thesis was collected from

UNLV’s enterprise data warehouse, UNLV Analytics [unl]. This data warehouse is used to generate

a large number of reports. These reports are used to provide retention, graduation, and other

information about the university to the IPEDS. The following subsection describes the collection

of data for this thesis.

3.2 Data Extraction form UNLV Analytics

UNLV Analytics provides student data such as admission, enrollment, etc. for reporting. The

data is stored for each census date. We extracted the admission and enrollment data of first-time

full-time students from the years 2012 to 2017. This data contains students’ enrollment history

for each term, as well as their grade point average (GPA). Along with current academic data, we

collected each student’s high school GPA and their demographic information.

3.2.1 SAS Data Integration Studio (DIS) for Data Transformation

The SAS Data Integration Studio (DIS) [LF15] graphical user interface allows for the creation of

complex transformation flows to transform raw data into warehouse data for reporting. We created

several DIS applications to combine different data files collected from UNLV Analytics to create two

final output files: first-year retention and second-year retention. Finally, the combined files were
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used as raw data for machine learning models. Figure 3.1 shows one of the applications designed

in SAS DIS for this thesis.

Figure 3.1: Master application designed in SAS DIS

3.2.2 Data Description

The data of computer science undergraduate students for years 2012 to 2017 was collected. This

data contains several .csv files, which include admission and enrollment, along with demographical

and high school information. The data instances which matched the criteria set on the academic

plan field (CSPRE, CSCBS, CSCBA) were extracted from UNLV Analytics. The raw data contains

a total of 508 first-time full-time students enrolled in academic plan such as CSPRE, CSCBS, and

CSCBA at UNLV from 2012 to 2017. The data includes a variety of features about each student,

such as demo-graphical information like age at admission, ethnicity, high school academic data,

American College Testing (ACT) score, and each term’s GPA, as well as total credits enrolled in

each term and course grades for each course taken in each term; it also shows whether the student

was retained in the second/third year in the CS major or at UNLV. We captured 25 features and

grades in all courses taken by all first-time full-time students enrolled from 2012 to 2017. In total,

we captured 320 features in first-year retention dataset and 387 features in second-year retention

dataset. Table 3.1 shows the features captured for each student for first-year and second-year

retention

Table 3.1: Description of features for student retention data.

No. Feature Type Description

1 Age Numerical Age at the time of admission

2 Gender Binary Nominal Student Gender (M, F)

3 USA Citizen Binary Nominal Citizen status of a student (Y, N)

4 Non Resident Alien Binary Nominal Alien status of a student (Y, N)

Continued on next page

24



www.manaraa.com

Table 3.1 – continued from previous page

No. Feature Type Description

5 IPEDS Race Ethnicity Multi Nominal Ethnicity of a student

6 Core High School GPA Numerical Core High School GPA of a Student

7 Unweighted High School GPA Numerical Unweighted High School GPA of a

Student

8 Weighted High School GPA Numerical Weighted High School GPA of a

Student

9 At risk First Generation Multi Nominal Status of first-generation student at

risk (Y, N, U)

10 At risk Pell Binary Nominal Status of a student at risk of not get-

ting Pell Scholarship

11 Application Term Multi Nominal Admitted term year number

12 ACT score final Numerical ACT score of a student

13 F1 GPA Numerical GPA of first year fall term

14 S1 GPA Numerical GPA of first year spring term

15 F2 GPA Numerical GPA of second year fall term

16 S2 GPA Numerical GPA of second year spring term

17 Cum GPA Numerical Cumulative GPA

18 F1 Crd Enrl Numerical Credits enrolled in first year in fall

19 S1 Crd Enrl Numerical Credits enrolled in first year in

spring

20 F2 Crd Enrl Numerical Credits enrolled in second year in

fall

21 S2 Crd Enrl Numerical Credits enrolled in second year in

spring

22 S1 Ret CS Binary Nominal If student retained for first year

spring in CS major {0, 1}

23 S1 Ret UNLV Binary Nominal If student retained for first year

spring at UNLV {0, 1}

Continued on next page
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Table 3.1 – continued from previous page

No. Feature Type Description

24 S2 Ret CS Binary Nominal If student retained for second year

spring in CS major {0, 1}

25 S2 Ret UNLV Binary Nominal If student retained for second year

spring at UNLV {0, 1}

The first-time full-time admitted CS students can enroll into courses offered by other departments.

Using our data, we found most of these students enroll into courses required by the CS department

to begin their academic careers. Table 3.2 and 3.3 show the top 20 courses taken by students in

their first and second years for fall and spring terms.

Table 3.2: First Year Course Count

Course Count Course Count

F1 EGG 101 Grd 325 S1 ENG 102 Grd 197

F1 ENG 101 Grd 249 S1 COM 101 Grd 130

F1 SOC 101 Grd 152 S1 CS 135 Grd 108

F1 MATH 127 Grd 126 S1 CPE 100 Grd 98

F1 THTR 100 Grd 119 S1 MATH 181 Grd 94

F1 MATH 126 Grd 113 S1 EGG 101 Grd 84

F1 HIST 101 Grd 110 S1 CS 202 Grd 76

F1 CS 135 Grd 107 S1 ENG 101F Grd 72

F1 MATH 181 Grd 96 S1 MATH 127 Grd 71

F1 ENG 101E Grd 95 S1 PSY 101 Grd 67

F1 MUS 125 Grd 71 S1 MATH 182 Grd 66

F1 PSY 101 Grd 69 S1 PHIL 114 Grd 62

F1 CPE 100 Grd 49 S1 MATH 126 Grd 60

F1 ENG 102 Grd 44 S1 HIST 101 Grd 52

F1 DAN 166 Grd 43 S1 HIST 102 Grd 51

Continued on next page
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Table 3.2 – continued from previous page

Course Count Course Count

F1 COM 101 Grd 39 S1 CPE 100L Grd 50

F1 MATH 95 Grd 36 S1 SOC 101 Grd 42

F1 MATH 182 Grd 34 S1 ENG 101 Grd 41

F1 PHIL 114 Grd 31 S1 PSC 100 Grd 38

F1 MATH 96 Grd 30 S1 PSC 101 Grd 38

Table 3.3: Second Year Course Count

Course Count Course Count

F2 PHIL 114 Grd 87 S2 CS 302 Grd 60

F2 CPE 100L Grd 75 S2 CS 202 Grd 55

F2 CPE 100 Grd 74 S2 MATH 251 Grd 46

F2 CS 202 Grd 74 S2 GEOL 101 Grd 44

F2 ENG 102 Grd 68 S2 CS 218 Grd 42

F2 COM 101 Grd 65 S2 MATH 182 Grd 40

F2 MATH 182 Grd 61 S2 ENG 407B Grd 39

F2 CS 135 Grd 60 S2 CPE 100 Grd 38

F2 MATH 181 Grd 52 S2 MATH 181 Grd 38

F2 PHIL 242 Grd 46 S2 PHIL 114 Grd 38

F2 CS 218 Grd 43 S2 COM 101 Grd 35

F2 MATH 251 Grd 42 S2 CS 219 Grd 35

F2 GEOL 101 Grd 38 S2 PHIL 242 Grd 34

F2 MATH 126 Grd 30 S2 CS 135 Grd 26

F2 MATH 127 Grd 27 S2 PSY 101 Grd 26

F2 CS 302 Grd 23 S2 CPE 100L Grd 25

F2 HIST 102 Grd 22 S2 ENG 102 Grd 21

F2 COE 202 Grd 21 S2 MATH 126 Grd 21

Continued on next page
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Table 3.3 – continued from previous page

Course Count Course Count

F2 ENG 231 Grd 21 S2 ENG 231 Grd 18

F2 WMST 113 Grd 19 S2 HIST 102 Grd 18

3.2.3 Feature Extraction

The process of creating or extracting important features from raw data is known as feature extrac-

tion. We collected a full history of all of the first-time full-time students in the CS major from 2012

to 2017. This data contains information about students’ ACT scores, course letter grades, credits

taken, and other features. We converted a few features into the required format to use them in our

machine learning models. The following sub-section describes the computation of few new features.

3.2.3.1 Computation of ACT score final Feature

Campus wide, all students are required to report their standardized exam scores, such as ACT and

Scholastic Assessment Test (SAT), when applying for any program at the university. There are

number of students who submit only one of these scores, which makes it difficult to combine these

scores as one feature. The SAT exam has three variations: before 2005, SAT had a 1600 maximum

score; after 2005, the maximum score was changed to 2400; and recently, in 2016, it was again

changed to 1600. To convert these score variations, we used the College Board’s SAT concordance

tables [Colb] [Cola]. We converted all SAT scores into the 2016 SAT variation. After this, we still

had some missing values, either in SAT scores or in ACT scores. We then converted all the SAT

scores into ACT scores. The maximum ACT score is 36. The ACT score final feature was then

used to represent this conversion of all SAT and ACT scores into ACT scores.

3.2.3.2 Computation of S1 Ret CS Feature

S1 Ret CS is the feature that is calculated on the basis of students’ enrollment in the first-year

spring term in the CS major after completing the first-year fall term in the CS major. This feature

has a binary flag value of 0 and 1.
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3.2.3.3 Computation of S1 Ret UNLV Feature

S1 Ret UNLV is the feature that is calculated on the basis of students’ enrollment in the first-year

spring term after completing the first-year fall term at UNLV. This feature has a binary flag value

of 0 and 1. If a student changes their major or stays in the CS major at UNLV and has enrolled,

then flag to this feature is set to 1. Otherwise, if a student has dropped out of UNLV, then the flag

is set to 0.

3.2.3.4 Computation of S2 Ret CS Feature

S2 Ret CS is the feature that is calculated on the basis of students’ enrollment in the second-year

spring term in the CS major after completing the second-year fall term in the CS major. This

feature has a binary flag value of 0 and 1.

3.2.3.5 Computation of S2 Ret UNLV Feature

S2 Ret UNLV is the feature that is calculated on the basis of students’ enrollment in the second-

year spring term after completing the second-year fall term at UNLV. This feature has a binary

flag value of 0 and 1. If a student changes their major or stays in the CS major at UNLV and has

enrolled, then the flag to this feature is set to 1. Otherwise, if a student has dropped out of UNLV,

then the flag is set to 0.

3.2.3.6 Computation of F2 Ret CS Output Label

The main goal of this thesis is to identify the students who are not going to be retained in CS in

their second-year. This information is stored in the output label F2 Ret CS and is calculated on

the basis of students’ enrollment in the second-year fall term in CS after completing the first-year

in CS. This output label has a binary flag value of 0 and 1.

3.2.3.7 Computation of F2 Ret UNLV Output Label

F2 Ret UNLV is the output label which is calculated on the basis of students’ enrollment in the

second-year fall term after completing their first-year at UNLV. This output label has a binary flag

value of 0 and 1.
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3.2.3.8 Computation of F3 Ret CS Output Label

The main goal of this thesis is to identify the students who are not going to be retained in CS in

their third-year. This information is stored in the output label F3 Ret CS and is calculated on the

basis of students’ enrollment in the third-year fall term in CS after completing the second-year in

CS. This output label has a binary flag value of 0 and 1.

3.2.3.9 Computation of F3 Ret UNLV Output Label

F3 Ret UNLV is the output label which is calculated on the basis of students’ enrollment in the

third-year fall term after completing their second-year at UNLV. This output label has a binary

flag value of 0 and 1.

3.3 Data Pre-processing

Most features in a real-world dataset cannot be used as an input to a machine learning model. We

need to transform these data features into the format required by the model. After transformation,

we get a clean dataset, which can be used for analysis. The following sub-sections explain the

transformations done on various features.

3.3.1 Handling Missing Values

A machine learning model works on finding a weight for each feature in the dataset using mathe-

matical formulas; hence, it is not acceptable to have data with missing values for the computation.

Generally, if there is a large dataset with countable missing values, we can remove this data from

our dataset and continue with the machine learning computations. However, in most of the cases,

we need to fill in these missing values using some kind of algorithm. The process of filling in missing

data is called imputation. Table 3.4 shows the count of missing values for features in our dataset.

Table 3.4: Count of missing values for features

Feature Number of missing values

Core High School GPA 47

Unweighted High School GPA 23

Weighted High School GPA 22
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3.3.1.1 Imputing all High School GPAs

Table 3.4 shows the total number of missing values for each feature. We have a total of 508 records

in first-year retention and 319 records in second-year retention datasets. Table 3.5 and 3.6 show

the impact of missing values on output variables in first-year retention and second-year retention.

The impact of the missing values of high school GPAs on retention is very limited. More than 1/3

of the missing value population were retained in CS and at UNLV in their first year. Moreover, in

the second year, more than 2/3 of the missing value population was retained in CS and at UNLV

in their second year. Looking at the impact, we used k-nearest neighbors (KNN) imputation with

k=10 to fill all of the missing values in high school GPAs.

Table 3.5: Missing value impact of high school GPAs on first-year retention

Missing? Count of records F2 Ret CS F2 Ret UNLV

Core High School GPA
No 461 287 363

Yes 47 22 28

Unweighted High School GPA
No 485 301 381

Yes 23 8 10

Weighted High School GPA
No 486 302 382

Yes 22 7 9

Table 3.6: Missing value impact of high school GPAs on second-year retention

Missing? Count of records F2 Ret CS F2 Ret UNLV

Core High School GPA
No 296 211 245

Yes 23 15 19

Unweighted High School GPA
No 311 220 257

Yes 8 6 7

Weighted High School GPA
No 312 221 258

Yes 7 5 6

3.3.1.2 Imputing and Standardizing Grade Feature

We collected students’ grades for all the courses they took in their first and second years. These

grades range from A to D-, and S, AD, I, U, F, and W. It is not necessary that each student to take

all courses in their first and second years. We collected data on 286 first-year and 352 second-year

courses. There were many null values in each column. To overcome this issue, we converted all of
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the letter grades into numerical values, where A is the highest with 17, and null is the lowest with

0. Table 3.7 shows all of the possible grades in CS. After converting letter grades to numbers, we

used a standardization technique to standardize the data in the range of 0 and 1. We used min-max

standardization, defined in Equation 3.1.

Xnew =
X −Xmin

Xmax −Xmin
(3.1)

Table 3.7: Grades to numerical conversion using min-max standardization

Grade Numerical equivalent

A 17

A- 16

B+ 15

B 14

B- 13

C+ 12

C 11

C- 10

D+ 9

D 8

D- 7

S 6

AD 5

I 4

U 3

F 2

W 1

Null (NaN) 0

3.3.1.3 Converting Categorical Features

In our dataset, we have four features with binary categorical values (‘Y’ and ‘N’). We converted

all of these features into numerical vectors by assigning 1 to ‘Y’ and 0 to ‘N’. All other categorical

features that have more than two values were converted using the one-hot-encoding technique which

results in a one-hot vector. Each value in the feature will have one non-zero element in that vector.

There are three such categorical features, which were encoded to find 17 new features.
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3.4 Data Visualization and Analysis

To extract the important information from the data, we used several data visualization techniques.

We found some important patterns in the data with the help of various plots.

3.4.1 Application Term vs Retention

To understand how retention and dropout counts are distributed in each application term (cohort

year), we plotted a line graph, shown in Figures 3.2 and 3.3. Figure 3.2 shows that for first-

year, retention in both the CS and at UNLV steadily decreases compared to the total enrollment.

However, the non-retention count increases with total enrollment. In the second-year retention

(Figure 3.3), the count of non-returning students has increased in recent years.

Figure 3.2: First year retention over application terms

Figure 3.3: Second year retention over application terms
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3.4.2 IPEDS Race Ethnicity vs Retention

We looked into the impact of ethnicity on CS enrollment and retention. We plotted pie charts to

see the diversity of student population in CS (Figure 3.4 and 3.5). We found that more than 75%

of enrolled students in CS are Asian, Hispanic, or White, in both first and second years. Later, we

plotted a bar chart for first-year and second-year retention in CS and UNLV. The plots are shown

in Figures 3.6 and 3.7. The plots show that, retention is highest among Asian students in both CS

and UNLV, followed by Hispanic and White students. The plots also show that, switching majors

within UNLV is highest among White students. We included ethnicity in our machine learning

model to analyze its correlation with dropout.

Figure 3.4: Pie chat of first year on ethnicity

Figure 3.5: Pie chat of second year on ethnicity
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Figure 3.6: Count plot of retention on ethnicity in first year

Figure 3.7: Count plot of retention on ethnicity in second year

3.5 Feature Importance

Based on the input and output feature types, there are three different ways to determine the im-

portance of the input features for the output features:

Correlation: In this test, we use the Pearson correlation coefficient to find the relationship be-

tween two features. If the correlation coefficient is high, then the correlation of that feature with

the output is high. We can perform a correlation test when the features are quantitative and not

categorical.
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Analysis Of Variance (ANOVA): ANOVA does the analysis of variance. This test can be

performed on datasets, in which the input features are categorical and the output is quantitative.

Chi-Square: A chi-square test (x2 test) is used to find the difference between expected and

observed frequencies in one or more features. This test can be performed on categorical and quan-

titative features, in which the output can be both categorical or quantitative.

Our datasets has both categorical and quantitative features in them. To find the importance

of features, we used the chi-square test. Using the chi-square test we found that, for both first and

second year, the number of credits enrolled during the spring term is the most important feature

for retention. Tables 3.8 and 3.9 shows the top 20 features for each output label in first-year and

second-year retention datasets, based on the chi-square test scores. To indicate positive or nega-

tive relationship between features and output, we included the weights found by logistic regression

model.

Table 3.8: Top 20 features in first-year found by chi-square test

F2 Ret CS F2 Ret UNLV

Feature Score LR Weights Feature Score LR Weights

S1 Crd Enrl 156.14 0.01212595 S1 Crd Enrl 320.8 0.10128638

S1 GPA 77.93 0.266302692 S1 GPA 125.3 0.290619175

Cum GPA 76.54 0.477541192 Cum GPA 121.7 0.722194521

F1 GPA 43.96 0.196228609 F1 GPA 63.8 0.400289889

S1 Ret CS 34.97 1.845044632 S1 COM 101 Grd 22.44 0.828191364

S1 CPE 100 Grd 16.52 0.734318167 S1 Ret CS 20.99 0.146189931

S1 CS 135 Grd 15.57 0.637061098
IPEDS Race Ethnicity

18.45 0.797933375
Asian

S1 COM 101 Grd 15.14 0.306787624 S1 CPE 100 Grd 17.77 0.671842607

S1 CS 202 Grd 12.39 0.023027528 S1 ENG 102 Grd 17.12 0.618179634

S1 MATH 251 Grd 11.87 0.4516521 F1 Crd Enrl 16.15 -0.114354731

F1 MATH 182 Grd 11.06 0.390913769 F1 EGG 101 Grd 15.82 0.278939903

Continued on next page

36



www.manaraa.com

Table 3.8 – continued from previous page

F2 Ret CS F2 Ret UNLV

S1 ENG 102 Grd 10.58 0.146807246 S1 Ret UNLV 14.48 -0.245841558

F1 CPE 100 Grd 9.44 0.874711176 S1 CS 202 Grd 12.22 0.229536758

IPEDS Race Ethnicity
9.11 -0.646481376 S1 CS 135 Grd 12.12 0.357082161

White

F1 EGG 101 Grd 9.06 0.158473483 S1 MATH 181 Grd 11.03 0.598154507

IPEDS Race Ethnicity
8.84 -0.016925165 S1 CPE 100L Grd 10.03 0.19072058

Asian

S1 PHIL 114 Grd 8.66 0.609011196 F1 CS 135 Grd 8.96 0.423598765

F1 Crd Enrl 8.36 -0.084967951 F1 SOC 101 Grd 8.73 0.282095947

S1 CPE 100L Grd 7.93 -0.197442212 S1 HIST 101 Grd 8.64 0.734062171

S1 MATH 181 Grd 6.85 0.268284628 F1 ANTH 105 Grd 7.67 -0.231693493

Table 3.9: Top 20 features in second-year found by chi-square test

F3 Ret CS F3 Ret UNLV

Feature Score LR Weights Feature Score LR Weights

S2 Crd Enrl 171.16 0.047359625 S2 Crd Enrl 266.23 -0.003080136

S2 GPA 48.18 1.170845081 S2 GPA 75.12 1.789928694

F2 Crd Enrl 41.34 0.029942285 Cum GPA 50.56 1.793225308

Cum GPA 34.15 -0.324440599 F2 Crd Enrl 47.26 0.230599644

S1 GPA 18.46 -0.013499539 F2 GPA 23.21 -0.441421346

F2 GPA 18.31 -0.261929578 S1 GPA 17.26 0.086069566

S2 Ret CS 17.44 5.003769296
IPEDS Race Ethnicity

15.76 -1.408365223
Two or more races

IPEDS Race Ethnicity
17.23 -0.816001741 S2 Ret UNLV 10.93 -0.243613014

Two or more races

S2 CS 302 Grd 14.32 0.377876059 S2 Ret CS 10.2 1.376091587

Continued on next page
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Table 3.9 – continued from previous page

F3 Ret CS F3 Ret UNLV

S2 CS 219 Grd 11.93 1.151935156 F2 CHEM 103 Grd 8.47 -1.083118449

S2 CS 218 Grd 10.09 1.593010445 F1 GPA 7.14 -0.355147827

IPEDS Race Ethnicity
9.84 0.976450155 S2 CS 302 Grd 6.2 -0.366364378

Asian

S2 GEOL 101 Grd 9.39 2.12165791 Application Term 2178 6.14 -1.737736503

S2 PHIL 242 Grd 9.38 1.806289092 S2 CS 219 Grd 6.04 0.29642137

F2 CS 218 Grd 9.22 0.491283485 F2 CS 218 Grd 5.71 0.451189144

S2 CPE 100L Grd 8.86 1.74961295 S2 CS 218 Grd 5.6 1.034559859

F2 MATH 251 Grd 8.01 0.643828803 S2 COM 101 Grd 5.14 1.04100901

F2 PHIL 114 Grd 7.16 -0.163351624 Application Term 2138 4.98 1.203883942

F2 CPE 100L Grd 6.75 -0.172285276 F2 COM 216 Grd 4.8 -1.045223443

S2 MATH 251 Grd 6.74 0.099316903 F2 DAN 301 Grd 4.8 -1.566925705
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Chapter 4

Experiments and Results

4.1 Data Splitting

Once the datasets were created, there were around 320 independent features in first-year retention

dataset, excluding output labels, and 387 independent features in second-year retention dataset.

We used 80-20 split on these datasets to make training and test data. We used training data to

create validation data using the 80-20 split.

4.2 Experiments with Machine Learning Models

After creating training, validation, and test data from the entire dataset, each of the selected models

were trained by passing training data and evaluated using the validation data. We trained three

models: feedforward neural network, logistic regression, and support vector machine and generated

confusion matrix on the validation and test data, which then were used to calculate classification

accuracy, recall, precision, specificity, F1 score, fallout, AUC and ROC curve of the model. We

used k-fold cross-validation to generate the average results of AUC.

4.2.1 Feedforward Neural Network

A feedforward neural network was designed using Tensorflow and Keras packages in Python. We

used these designed models to fit our training data and the models were used to make predictions

on validation and test data. We designed two different models to predict the first-year and the

second-year retention. All of the evaluation metrics were calculated separately for each of the

models. The selected model has one input layer, one hidden layer, and one output layer.
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4.2.1.1 First-Year Retention for F2 ret CS using FNN Model

The confusion matrix generated on validation data is shown in Figure 4.1. Specificity calculated

using this confusion matrix shows that without oversampling output labels, FNN model gave good

results predicting output for label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.1: Confusion matrix of FNN model on validation data (first-year retention for F2 ret CS)

The ROC curves generated on validation data in Figure 4.2 also show that without oversampling

we got AUC score of 0.902 which is closer to AUC score of 1.000 found by k-fold cross-validation

using k=10 for output label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.2: ROC curves of FNN model on validation data (first-year retention for F2 ret CS)

All other metrics calculated using confusion matrix are shown in Table 4.1. Accuracy, specificity,

and AUC results show that FNN model without oversampling outperformed oversampled results.

Table 4.1: Results of FNN model on Validation data (first-year retention for F2 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.898 0.936 0.906 0.917 0.094 0.902 0.901

F2 ret CS 0.898 0.721 0.469 0.800 0.531 0.683 0.728

F2 ret UNLV 0.796 0.672 0.406 0.729 0.594 0.628 0.642
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The confusion matrix generated on test data is shown in Figure 4.3. Specificity calculated us-

ing this confusion matrix shows that, without oversampling output labels, FNN model gave good

results predicting output for label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.3: Confusion matrix of FNN model on test data (first-year retention for F2 ret CS)

The ROC curves generated on test data in Figure 4.4 also show that without oversampling we

found AUC score of 0.768 which is better than or equal to the AUC score found by oversampled

results for output label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.4: ROC curves of FNN model on validation data (first-year retention for F2 ret CS)

All other metrics calculated using confusion matrix (Figure 4.3) are shown in Table 4.3. Accuracy,

specificity, and AUC results show that FNN model without oversampling outperformed oversampled

results.

Table 4.2: Results of FNN model on test data (first-year retention for F2 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.917 0.775 0.619 0.840 0.381 0.768 0.794

F2 ret CS 0.933 0.675 0.357 0.783 0.643 0.645 0.696

F2 ret UNLV 0.917 0.775 0.619 0.840 0.381 0.768 0.794
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4.2.1.2 First-Year Retention for F2 ret UNLV using FNN Model

The confusion matrix generated on validation data is shown in Figure 4.5. Specificity calculated

using this confusion matrix shows that without oversampling output labels, FNN model gave good

results predicting output for label F2 ret UNLV.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.5: Confusion matrix of FNN model on validation data (first-year retention for
F2 ret UNLV)

The ROC curves generated on validation data in Figure 4.6 also show that without oversampling

we got AUC score of 0.902 which is closer to AUC score of 1.000 found by k-fold cross-validation

using k=10 for output label F2 ret UNLV.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.6: ROC curves of FNN model on validation data (first-year retention for F2 ret UNLV)

All other metrics calculated using confusion matrix are shown in Table 4.3. Accuracy, specificity,

and AUC results show that FNN model without oversampling outperformed oversampled results.

Table 4.3: Results of FNN model on Validation data (first-year retention for F2 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 1.000 0.954 0.833 0.977 0.167 0.917 0.963

F2 ret CS 0.635 0.909 0.778 0.748 0.222 0.706 0.667

F2 ret UNLV 0.952 0.909 0.667 0.930 0.333 0.809 0.889

42



www.manaraa.com

The confusion matrix generated on test data is shown in Figure 4.7. Specificity calculated us-

ing this confusion matrix shows that, without oversampling output labels, FNN model gave good

results predicting output for label F2 ret UNLV.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.7: Confusion matrix of FNN model on test data (first-year retention for F2 ret UNLV)

The ROC curves generated on test data in Figure 4.8 also show that without oversampling we

found AUC score of 0.768 which is better than or equal to the AUC score found by oversampled

results for output label F2 ret UNLV.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.8: ROC curves of FNN model on validation data (first-year retention for F2 ret UNLV)

All other metrics calculated using confusion matrix (Figure 4.7) are shown in Table 4.4. Accuracy,

specificity, and AUC results show that FNN model without oversampling outperformed oversampled

results.

Table 4.4: Results of FNN model on test data (first-year retention for F2 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.947 0.845 0.518 0.893 0.481 0.733 0.833

F2 ret CS 0.787 0.936 0.852 0.855 0.148 0.819 0.804

F2 ret UNLV 0.947 0.845 0.518 0.893 0.481 0.733 0.833
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4.2.1.3 Second-Year Retention for F3 ret CS using FNN Model

The confusion matrix generated on validation data is shown in Figure 4.9. Specificity calculated

using this confusion matrix shows that without oversampling output labels, FNN model gave good

results predicting output for label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.9: Confusion matrix of FNN model on validation data (second-year retention for
F3 ret CS)

The ROC curves generated on validation data in Figure 4.10 also show that without oversampling

we got AUC score of 1.000 which is equal to AUC score of 1.000 found by k-fold cross-validation

using k=10 for output label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.10: ROC curves of FNN model on validation data (second-year retention for F3 ret CS)

All other metrics calculated using confusion matrix are shown in Table 4.5. Accuracy, specificity,

and AUC results show that FNN model without oversampling performed similar to other results.

Table 4.5: Results of FNN model on Validation data (second-year retention for F3 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 1.000 1.000 1.000 1.000 0.000 1.000 1.000

F3 ret CS 0.917 0.767 0.333 0.835 0.667 0.625 0.745

F3 ret UNLV 1.000 1.000 1.000 1.000 0.000 1.000 1.000
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The confusion matrix generated on test data is shown in Figure 4.11. Specificity calculated using

this confusion matrix shows that, without oversampling output labels, FNN model gave good results

predicting output for label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.11: Confusion matrix of FNN model on test data (second-year retention for F3 ret CS)

The ROC curves generated on test data in Figure 4.12 also show that without oversampling we

found AUC score of 0.785 which is better than or equal to the AUC score found by oversampled

results for output label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.12: ROC curves of FNN model on validation data (second-year retention for F3 ret CS)

All other metrics calculated using confusion matrix (Figure 4.11) are shown in Table 4.6. Accuracy,

specificity, and AUC results show that FNN model without oversampling performed similar to other

results.

Table 4.6: Results of FNN model on test data (second-year retention for F3 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.848 0.886 0.722 0.867 0.278 0.785 0.812

F3 ret CS 0.891 0.854 0.611 0.872 0.389 0.751 0.812

F3 ret UNLV 0.848 0.886 0.722 0.867 0.278 0.785 0.812
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4.2.1.4 Second-Year Retention for F3 ret UNLV using FNN Model

The confusion matrix generated on validation data is shown in Figure 4.13. Specificity calculated

using this confusion matrix shows that without oversampling output labels, FNN model gave good

results predicting output for label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.13: Confusion matrix of FNN model on validation data (second-year retention for
F3 ret UNLV)

The ROC curves generated on validation data in Figure 4.14 also show that without oversampling

we got AUC score of 1.000 which is closer to AUC score of 1.000 found by k-fold cross-validation

using k=10 for output label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.14: ROC curves of FNN model on validation data (second-year retention for F3 ret UNLV)

All other metrics calculated using confusion matrix are shown in Table 4.7. Accuracy, specificity,

and AUC results show that FNN model without oversampling performed similar to other results.

Table 4.7: Results of FNN model on Validation data (second-year retention for F3 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 1.000 1.000 1.000 1.000 0.000 1.000 1.000

F3 ret CS 1.000 0.875 0.333 0.933 0.667 0.667 0.882

F3 ret UNLV 1.000 1.000 1.000 1.000 0.000 1.000 1.000
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The confusion matrix generated on test data is shown in Figure 4.15. Specificity calculated using

this confusion matrix shows that without oversampling output labels, FNN model gave good results

predicting output for label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.15: Confusion matrix of FNN model on test data (second-year retention for F3 ret UNLV)

The ROC curves generated on test data in Figure 4.16 also show that without oversampling output

labels we found AUC score of 0.864 which is better than or equal to the AUC score found by other

results for output label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.16: ROC curves of FNN model on validation data (second-year retention for F3 ret UNLV)

All other metrics calculated using confusion matrix (Figure 4.15) are shown in Table 4.8. Ac-

curacy, specificity, and AUC results show that FNN model without oversampling outperformed

oversampled results.

Table 4.8: Results of FNN model on test data (second-year retention for F3 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 1.000 0.946 0.727 0.972 0.273 0.864 0.953

F3 ret CS 1.000 0.930 0.636 0.964 0.364 0.818 0.937

F3 ret UNLV 1.000 0.930 0.636 0.964 0.364 0.818 0.937
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4.2.2 Logistic Regression

A logistic regression model was designed using the sklearn package in Python. We used these

designed models to fit our training data. The models were used to make predictions on validation

and test data. We designed two different models to predict the first-year and the second-year

retention. All of the evaluation metrics were calculated separately for each of the models.

4.2.2.1 First-Year Retention for F2 ret CS using LR Model

The confusion matrix generated on validation data is shown in Figure 4.17. Specificity calculated

using this confusion matrix shows that without oversampling output labels, LR model gave good

results predicting output for label F2 ret CS compare to oversampled results.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.17: Confusion matrix of LR model on validation data (first-year retention for F2 ret CS)

The ROC curves generated on validation data in Figure 4.18 also show that without oversampling

we got AUC score of 0.623 which is nearly equal to AUC score of 0.747 found by k-fold cross-

validation using k=10 for output label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.18: ROC curves of LR model on validation data (first-year retention for F2 ret CS)

All other metrics calculated using confusion matrix are shown in Table 4.9. Accuracy, specificity,

and AUC results show that LR model without oversampling outperformed oversampled results.
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Table 4.9: Results of LR model on Validation data (first-year retention for F2 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.714 0.700 0.531 0.707 0.469 0.623 0.642

F2 ret CS 0.918 0.643 0.219 0.756 0.781 0.569 0.642

F2 ret UNLV 0.653 0.711 0.594 0.681 0.406 0.623 0.630

The confusion matrix generated on test data is shown in Figure 4.19. Specificity calculated using

this confusion matrix shows that, without oversampling output labels, LR model gave good results

predicting output for label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.19: Confusion matrix of LR model on test data (first-year retention for F2 ret CS)

The ROC curves generated on test data in Figure 4.20 also show that without oversampling we

found AUC score of 0.824 which is better than the AUC score found by oversampled results for

output label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.20: ROC curves of LR model on validation data (first-year retention for F2 ret CS)

All other metrics calculated using confusion matrix (Figure 4.19) are shown in Table 4.10. Accuracy,

specificity, and AUC results show that LR model without oversampling outperformed oversampled

results.
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Table 4.10: Results of LR model on test data (first-year retention for F2 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.933 0.823 0.714 0.875 0.286 0.824 0.843

F2 ret CS 0.967 0.690 0.381 0.806 0.619 0.674 0.725

F2 ret UNLV 0.817 0.830 0.762 0.823 0.238 0.789 0.794

4.2.2.2 First-Year Retention for F2 ret UNLV using LR Model

The confusion matrix generated on validation data is shown in Figure 4.21. Specificity calculated

using this confusion matrix shows that LR model gave good results predicting output for label

F2 ret UNLV when output labels F2 ret CS was oversampled.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.21: Confusion matrix of LR model on validation data (first-year retention for
F2 ret UNLV)

The ROC curves generated on validation data in Figure 4.22 also show that without oversampling

we got AUC score of 0.679 which is closer to AUC score of 0.785 found by k-fold cross-validation

using k=10 for output label F2 ret UNLV.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.22: ROC curves of LR model on validation data (first-year retention for F2 ret UNLV)

All other metrics calculated using confusion matrix are shown in Table 4.11. Accuracy, Recall, and

AUC results show that LR model without oversampling outperformed oversampled results.
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Table 4.11: Results of LR model on Validation data (first-year retention for F2 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.968 0.847 0.389 0.904 0.611 0.679 0.839

F2 ret CS 0.651 0.891 0.722 0.752 0.278 0.686 0.667

F2 ret UNLV 0.809 0.850 0.500 0.829 0.500 0.655 0.741

The confusion matrix generated on test data is shown in Figure 4.23. Specificity calculated us-

ing this confusion matrix shows that LR model gave good results predicting output for label

F2 ret UNLV without oversampling any output labels.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.23: Confusion matrix of LR model on test data (first-year retention for F2 ret UNLV)

The ROC curves generated on test data in Figure 4.24 also show that without oversampling, we

found AUC score of 0.824 which is better than or equal to the AUC score found by other results

for output label F2 ret UNLV.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.24: ROC curves of LR model on validation data (first-year retention for F2 ret UNLV)

All other metrics calculated using confusion matrix (Figure 4.23) are shown in Table 4.12. Accuracy,

specificity, and AUC results show that LR model without oversampling outperformed oversampled

results.
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Table 4.12: Results of LR model on test data (first-year retention for F2 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.907 0.907 0.741 0.907 0.259 0.824 0.863

F2 ret CS 0.733 0.932 0.852 0.821 0.148 0.793 0.765

F2 ret UNLV 0.960 0.857 0.556 0.906 0.444 0.758 0.853

4.2.2.3 Second-Year Retention for F3 ret CS using LR Model

The confusion matrix generated on validation data is shown in Figure 4.25. Specificity calculated

using this confusion matrix shows that without oversampling output labels, LR model gave good

results predicting output for label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.25: Confusion matrix of LR model on validation data (second-year retention for F3 ret CS)

The ROC curves generated on validation data in Figure 4.26 also show that without oversampling

we got AUC score of 0.844 which is better than AUC score of 0.774 found by k-fold cross-validation

using k=10 for output label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.26: ROC curves of LR model on validation data (second-year retention for F3 ret CS)

All other metrics calculated using confusion matrix are shown in Table 4.13. Accuracy, specificity,

and AUC results show that LR model without oversampling performed similar to other results.
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Table 4.13: Results of LR model on Validation data (second-year retention for F3 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.889 0.914 0.800 0.901 0.200 0.844 0.863

F3 ret CS 0.889 0.889 0.733 0.889 0.267 0.811 0.843

F3 ret UNLV 0.917 0.892 0.733 0.904 0.267 0.825 0.863

The confusion matrix generated on test data is shown in Figure 4.27. Specificity calculated using

this confusion matrix shows that, without oversampling output labels, LR model gave good results

predicting output for label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.27: Confusion matrix of LR model on test data (second-year retention for F3 ret CS)

The ROC curves generated on test data in Figure 4.28 also show that without oversampling we

found AUC score of 0.701 which is better than or equal to the AUC score found by oversampled

results for output label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.28: ROC curves of LR model on validation data (second-year retention for F3 ret CS)

All other metrics calculated using confusion matrix (Figure 4.27) are shown in Table 4.14. Accu-

racy, specificity, and AUC results show that LR model without oversampling performed similar to

other results.

53



www.manaraa.com

Table 4.14: Results of LR model on test data (second-year retention for F3 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.848 0.830 0.556 0.839 0.444 0.701 0.766

F3 ret CS 0.804 0.822 0.556 0.813 0.444 0.680 0.734

F3 ret UNLV 0.826 0.826 0.556 0.826 0.444 0.691 0.750

4.2.2.4 Second-Year Retention for F3 ret UNLV using LR Model

The confusion matrix generated on validation data is shown in Figure 4.29. Specificity calculated

using this confusion matrix shows that without oversampling output labels, LR model gave good

results predicting output for label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.29: Confusion matrix of LR model on validation data (second-year retention for
F3 ret UNLV)

The ROC curves generated on validation data in Figure 4.30 also show that without oversampling

we got AUC score of 0.722 which is closer to AUC score of 0.815 found by k-fold cross-validation

using k=10 for output label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.30: ROC curves of LR model on validation data (second-year retention for F3 ret UNLV)

All other metrics calculated using confusion matrix are shown in Table 4.15. Accuracy, specificity,

and AUC results show that LR model without oversampling performed similar to other results.
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Table 4.15: Results of LR model on Validation data (second-year retention for F3 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 1.000 0.894 0.444 0.944 0.556 0.722 0.902

F3 ret CS 1.000 0.894 0.444 0.944 0.556 0.722 0.902

F3 ret UNLV 0.976 0.891 0.444 0.932 0.556 0.710 0.882

The confusion matrix generated on test data is shown in Figure 4.31. Specificity calculated using

this confusion matrix shows that without oversampling output labels, LR model gave good results

predicting output for label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.31: Confusion matrix of LR model on test data (second-year retention for F3 ret UNLV)

The ROC curves generated on test data in Figure 4.32 also show that without oversampling output

labels we found AUC score of 0.835 which is better than or equal to the AUC score found by other

results for output label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.32: ROC curves of LR model on validation data (second-year retention for F3 ret UNLV)

All other metrics calculated using confusion matrix (Figure 4.31) are shown in Table 4.16. Accuracy,

specificity, and AUC results show that LR model without oversampling outperformed oversampled

results.
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Table 4.16: Results of LR model on test data (second-year retention for F3 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.943 0.943 0.727 0.943 0.273 0.835 0.906

F3 ret CS 0.943 0.926 0.636 0.935 0.364 0.790 0.891

F3 ret UNLV 0.962 0.911 0.545 0.936 0.454 0.754 0.891

4.2.3 Support Vector Machine

A support vector machine model was designed using the sklearn package in Python. We used these

designed models to fit our training data. The models were used to make predictions on validation

and test data. We designed two different models to predict the first-year and the second-year

retention. All of the evaluation metrics were calculated separately for each of the models.

4.2.3.1 First-Year Retention for F2 ret CS using SVM Model

The confusion matrix generated on validation data is shown in Figure 4.33. Specificity calculated

using this confusion matrix shows that with oversampling output label F2 ret UNLV, SVM model

gave good results predicting output for label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.33: Confusion matrix of SVM model on validation data (first-year retention for F2 ret CS)

The ROC curves generated on validation data in Figure 4.34 also show that without oversampling

we got AUC score of 0.628 which is nearly equal to AUC score of 0.736 found by k-fold cross-

validation using k=10 for output label F2 ret CS.

All other metrics calculated using confusion matrix are shown in Table 4.17. Accuracy, specificity,

and AUC results show that SVM model without oversampling performed similar to oversampled

results.
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(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.34: ROC curves of SVM model on validation data (first-year retention for F2 ret CS)

Table 4.17: Results of SVM model on Validation data (first-year retention for F2 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.796 0.672 0.406 0.729 0.594 0.628 0.642

F2 ret CS 0.939 0.676 0.312 0.786 0.687 0.615 0.691

F2 ret UNLV 0.653 0.696 0.562 0.674 0.437 0.608 0.617

The confusion matrix generated on test data is shown in Figure 4.35. Specificity calculated using

this confusion matrix shows that, with oversampling output label F2 ret UNLV, SVM model gave

good results predicting output for label F2 ret CS.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.35: Confusion matrix of SVM model on test data (first-year retention for F2 ret CS)

The ROC curves generated on test data in Figure 4.36 also show that without oversampling we

found AUC score of 0.763 which is better than the AUC score found by oversampled results for

output label F2 ret CS.

All other metrics calculated using confusion matrix (Figure 4.35) are shown in Table 4.18. Accu-

racy, specificity, and AUC results show that SVM model without oversampling performed similar

oversampled results.
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(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.36: ROC curves of SVM model on validation data (first-year retention for F2 ret CS)

Table 4.18: Results of SVM model on test data (first-year retention for F2 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.917 0.754 0.571 0.827 0.429 0.763 0.774

F2 ret CS 0.967 0.674 0.333 0.794 0.667 0.665 0.706

F2 ret UNLV 0.800 0.787 0.690 0.793 0.309 0.754 0.755

4.2.3.2 First-Year Retention for F2 ret UNLV using SVM Model

The confusion matrix generated on validation data is shown in Figure 4.37. Specificity calculated

using this confusion matrix shows that with oversampling output label F2 ret UNLV, SVM model

gave good results predicting output for label F2 ret UNLV.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.37: Confusion matrix of SVM model on validation data (first-year retention for
F2 ret UNLV)

The ROC curves generated on validation data in Figure 4.38 also show that without oversampling

we got AUC score of 0.714 which is similar to AUC score of 0.785 found by k-fold cross-validation

using k=10 for output label F2 ret UNLV.

All other metrics calculated using confusion matrix are shown in Table 4.19. Accuracy, specificity,
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(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.38: ROC curves of SVM model on validation data (first-year retention for F2 ret UNLV)

and AUC results show that SVM model without oversampling performed similar to oversampled

results.

Table 4.19: Results of SVM model on Validation data (first-year retention for F2 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.984 0.861 0.444 0.918 0.556 0.714 0.864

F2 ret CS 0.667 0.840 0.556 0.743 0.444 0.667 0.642

F2 ret UNLV 0.841 0.883 0.611 0.862 0.389 0.714 0.790

The confusion matrix generated on test data is shown in Figure 4.39. Specificity calculated using

this confusion matrix shows that with oversampling output label F2 ret CS, SVM model gave good

results predicting output for label F2 ret UNLV.

(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.39: Confusion matrix of SVM model on test data (first-year retention for F2 ret UNLV)

The ROC curves generated on test data shown in Figure 4.40 also show that without oversampling

we found AUC score of 0.721 which is better than or equal to the AUC score found by oversampled

results for output label F2 ret UNLV.

All other metrics calculated using confusion matrix (Figure 4.39) are shown in Table 4.20. Ac-
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(a) Without oversampling (b) Oversampling F2 ret CS (c) Oversampling F2 ret UNLV

Figure 4.40: ROC curves of SVM model on validation data (first-year retention for F2 ret UNLV)

curacy, specificity, and AUC result shows that SVM model without oversampling outperformed

oversampled results.

Table 4.20: Results of SVM model on test data (first-year retention for F2 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.973 0.820 0.407 0.890 0.593 0.721 0.823

F2 ret CS 0.773 0.921 0.815 0.841 0.185 0.794 0.784

F2 ret UNLV 0.973 0.820 0.407 0.890 0.593 0.720 0.821

4.2.3.3 Second-Year Retention for F3 ret CS using SVM Model

The confusion matrix generated on validation data is shown in Figure 4.41. Specificity calculated

using this confusion matrix shows that without oversampling output labels, SVM model gave good

results predicting output for label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.41: Confusion matrix of SVM model on validation data (second-year retention for
F3 ret CS)

The ROC curves generated on validation data in Figure 4.42 also show that without oversampling

we got AUC score of 0.778 which is better than AUC score of 0.703 found by k-fold cross-validation
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using k=10 for output label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.42: ROC curves of SVM model on validation data (second-year retention for F3 ret CS)

All other metrics calculated using confusion matrix are shown in Table 4.21. Accuracy, specificity,

and AUC results show that SVM model without oversampling performed similar to other results.

Table 4.21: Results of SVM model on Validation data (second-year retention for F3 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.861 0.861 0.667 0.861 0.333 0.778 0.804

F3 ret CS 0.778 0.848 0.667 0.812 0.333 0.636 0.745

F3 ret UNLV 0.778 0.848 0.667 0.812 0.333 0.644 0.745

The confusion matrix generated on test data is shown in Figure 4.43. Specificity calculated using

this confusion matrix shows that, without oversampling output labels, SVM model gave good re-

sults predicting output for label F3 ret CS.

(a) Without oversampling (b) Oversampling F3 ret UNLV (c) Oversampling F3 ret CS

Figure 4.43: Confusion matrix of SVM model on test data (second-year retention for F3 ret CS)

The ROC curves generated on test data in Figure 4.44 also show that without oversampling we

found AUC score of 0.696 which is better than or equal to the AUC score found by oversampled

results for output label F3 ret CS.
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(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.44: ROC curves of SVM model on validation data (second-year retention for F3 ret CS)

All other metrics calculated using confusion matrix (Figure 4.43) are shown in Table 4.22. Accu-

racy, specificity, and AUC results show that SVM model without oversampling performed similar

to other results.

Table 4.22: Results of SVM model on test data (second-year retention for F3 ret CS)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.783 0.857 0.667 0.818 0.333 0.696 0.750

F3 ret CS 0.761 0.814 0.556 0.786 0.444 0.658 0.703

F3 ret UNLV 0.783 0.783 0.444 0.783 0.556 0.630 0.687

4.2.3.4 Second-Year Retention for F3 ret UNLV using SVM Model

The confusion matrix generated on validation data is shown in Figure 4.45. Specificity calculated

using this confusion matrix shows that without oversampling output labels, SVM model gave good

results predicting output for label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.45: Confusion matrix of SVM model on validation data (second-year retention for
F3 ret UNLV)

The ROC curves generated on validation data in Figure 4.46 also show that without oversampling
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we got AUC score of 0.599 which is closer to AUC score of 0.801 found by k-fold cross-validation

using k=10 for output label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.46: ROC curves of SVM model on validation data (second-year retention for F3 ret UNLV)

All other metrics calculated using confusion matrix are shown in Table 4.23. Accuracy, specificity,

and AUC results show that SVM model without oversampling performed similar to other results.

Table 4.23: Results of SVM model on Validation data (second-year retention for F3 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.929 0.886 0.444 0.907 0.556 0.599 0.843

F3 ret CS 0.905 0.864 0.333 0.884 0.667 0.599 0.804

F3 ret UNLV 0.929 0.848 0.222 0.886 0.778 0.544 0.804

The confusion matrix generated on test data is shown in Figure 4.47. Specificity calculated using

this confusion matrix shows that without oversampling output labels, SVM model gave good results

predicting output for label F3 ret UNLV.

(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.47: Confusion matrix of SVM model on test data (second-year retention for F3 ret UNLV)

The ROC curves generated on test data in Figure 4.48 also show that without oversampling output

labels we found AUC score of 0.835 which is better than or equal to the AUC score found by other

results for output label F3 ret UNLV.
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(a) Without oversampling (b) Oversampling F3 ret CS (c) Oversampling F3 ret UNLV

Figure 4.48: ROC curves of SVM model on validation data (second-year retention for F3 ret UNLV)

All other metrics calculated using confusion matrix (Figure 4.47) are shown in Table 4.24. Accuracy,

specificity, and AUC results show that SVM model without oversampling performed similar to other

results.

Table 4.24: Results of SVM model on test data (second-year retention for F3 ret UNLV)

Oversampling Recall Precision Specificity F1 score Fallout AUC Accuracy

Without 0.962 0.911 0.545 0.936 0.454 0.727 0.891

F3 ret CS 0.943 0.909 0.545 0.926 0.454 0.754 0.875

F3 ret UNLV 0.943 0.909 0.545 0.926 0.454 0.744 0.875

4.3 Comparison Study of Machine Learning Models

4.3.1 Choosing best model to predict first-year retention

For predicting output label F2 ret CS, oversampling output labels gave almost similar results to

without oversampling output labels. Hence, we used all the results found by without oversampling

to choose the best model to predict first-year retention in Department of Computer Science. Table

4.25 shows that logistic regression model worked best on predicting output for label F2 ret CS with

accuracy of 0.843 and specificity of 0.714.

Table 4.25: Best model results to predict first-year retention for F2 ret CS

Model Recall Precision Specificity F1 score Fallout AUC Accuracy

FNN 0.917 0.775 0.619 0.840 0.381 0.768 0.794

LR 0.933 0.823 0.714 0.875 0.286 0.824 0.843

SVM 0.917 0.754 0.571 0.827 0.429 0.763 0.774

Similarly, for predicting output label F2 ret UNLV, we used all the results found by without over-
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sampling to choose the best model to predict first-year retention at UNLV. Table 4.26 shows that

logistic regression model worked best on predicting output for label F2 ret UNLV with accuracy of

0.863 and specificity of 0.741.

Table 4.26: Best model results to predict first-year retention for F2 ret UNLV

Model Recall Precision Specificity F1 score Fallout AUC Accuracy

FNN 0.947 0.845 0.518 0.893 0.481 0.733 0.833

LR 0.907 0.907 0.741 0.907 0.259 0.824 0.863

SVM 0.973 0.820 0.407 0.890 0.593 0.721 0.823

4.3.2 Choosing best model to predict second-year retention

For predicting output label F3 ret CS, oversampling output labels gave almost similar results to

without oversampling output labels. Hence, we used all the results found by without oversampling

to choose the best model to predict second-year retention in Department of Computer Science.

Table 4.27 shows that feedforwared neural network model worked best on predicting output for

label F3 ret CS with accuracy of 0.843 and specificity of 0.714.

Table 4.27: Best model results to predict second-year retention for F3 ret CS

Model Recall Precision Specificity F1 score Fallout AUC Accuracy

FNN 0.848 0.886 0.722 0.867 0.278 0.785 0.812

LR 0.848 0.830 0.556 0.839 0.444 0.701 0.766

SVM 0.783 0.857 0.667 0.818 0.333 0.696 0.750

Similarly, for predicting output label F3 ret UNLV, we used all the results found by without over-

sampling to choose the best model to predict second-year retention at UNLV. Table 4.28 shows

that feedforwared neural network model worked best on predicting output for label F3 ret UNLV

with accuracy of 0.953 and specificity of 0.727.

Table 4.28: Best model results to predict second-year retention for F3 ret UNLV

Model Recall Precision Specificity F1 score Fallout AUC Accuracy

FNN 1.000 0.946 0.727 0.972 0.273 0.864 0.953

LR 0.943 0.943 0.727 0.943 0.273 0.835 0.906

SVM 0.962 0.911 0.545 0.936 0.454 0.727 0.891
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Chapter 5

Conclusion and Future work

In this thesis, we worked on the problem of predicting first-year and second-year retention in the

Department of Computer Science at the University of Nevada, Las Vegas. We determined and

collected features including students’ pre-university academic information, demographic informa-

tion, and standardized test scores (like SAT and ACT), along with current academic information

including grades obtained in each course and total credits enrolled in for each term, as well as

GPA, and cumulative GPA. We collected this data from UNLV’s enterprise data warehouse, UNLV

Analytics. We used SAS DIS to clean and transform the data.

The cleaned and transformed data was used to train our selected machine learning models, feedfor-

ward neural network, logistic regression, and support vector machine. We evaluated all the models

using various classification evaluation metrics to determine the best model, which would work on

first-year and second-year students’ academic data to identify students who are at-risk of dropping

out. Our main focus was to reduce the number of falsely classified negative examples, which we

evaluated using specificity metric calculated from the confusion matrix.

The results of the first-year retention reveal that logistic regression works best to predict retention

in the Department of Computer Science, with accuracy of 0.843 and specificity of 0.714, as well as

retention at UNLV, with accuracy of 0.863 and specificity of 0.741 [Table 4.25 and 4.26]. The results

of second-year retention reveal that feedforward neural network works best to predict retention in

the Department of Computer Science, with accuracy of 0.812 and specificity of 0.722, as well as

retention at UNLV, with accuracy of 0.953 and specificity of 0.727 [Table 4.27 and 4.28]. We also

performed chi-square (x2) test to determine the importance of features in predicting the output
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labels. Results show that the most important features in predicting retention are total credits en-

rolled in spring and fall terms, GPAs, and the required CS courses [Table 3.8 and 3.9]. This feature

importance can help in determining which courses are important in students’ retention. Using this

information, the department can create programs to update the course structure, so that students

can increase their academic performance. Based on the results generated by our best models, the

university can reach all students who are predicted to be at-risk of not being retained to reduce

the number of dropouts.

For future work, we would like to gather more data about students, including student/teacher

relations, students’ campus events involvement, hours spent in the library, midterm grades, assign-

ment grades, financial situation, scholarship and funds information, participation in collaborative

studies and other features so that we can boost the prediction accuracy and improve the specificity

metric to better identify the students who are at-risk of dropping out.

The selected models performed well, however, in the future, we would like to explore other machine

learning models. These datasets, based on their feature characteristics, would lend themselves to be

modeled well on algorithms like decision trees and random forest. So, we would like to implement

those to compare and improve predictive power.
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Expiration Date 08-Oct-2024
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